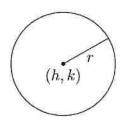
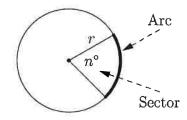

SOUTHERN CALIFORNIA SURVEYORS JOINTS APPRENTICESHIP COMMITTEE STUDY GUIDE FOR QUALIFICATION TEST

This guide is for use in preparing for the required algebra and geometry test.


GEOMETRY

Relations of Angles between Parallel Lines and Transversals



Elements of a Circle: Area, Circumference, Radius, Diameter

Figuring the Arc Length of a Fractional Part of a Circle

$${
m Area} = \pi r^2$$
 ${
m Circumference} = 2\pi r$ ${
m Full\ circle} = 360^\circ$

Length Of Arc =
$$(n^{\circ}/360^{\circ}) \cdot 2\pi r$$

Area Of Sector = $(n^{\circ}/360^{\circ}) \cdot \pi r^2$

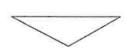
Elements and Types of Triangles

Elements of an Isosceles Triangle

CLASSIFICATION BY SIDES

Scalene triangle no equal sides

Isosceles triangle two equal sides

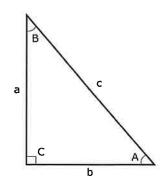


Equilateral triangle three equal sides

CLASSIFICATION BY ANGLES

Acute angled triangle all acute angles

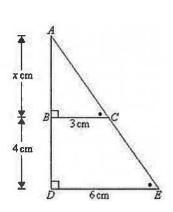
Obtuse angled triangle one obtuse angle



Right angled triangle one right angle

Figuring Angles in a Right Triangle

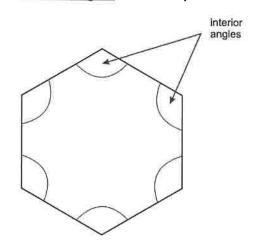
Figuring the Side of a Right Triangle


Similar Right Triangles

$$\sin A = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{a}{c}$$

$$\cos A = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{b}{c}$$

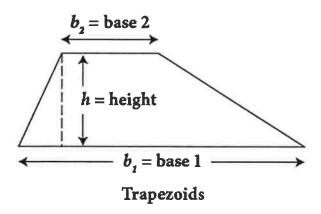
$$\tan A = \frac{\text{opposite}}{\text{adjacent}} = \frac{a}{b}$$


Pythagorean Theorem : $a^2 + b^2 = c^2$

Elements of a Regular Polygon, Sum of Interior Angles

Angles of Regular Polygons

Sum of the interior Angles 180(n-2)


Sum of the Exterior Angles Always 360°

Elements of a Trapezoid

Area of a Trapezoid = $\frac{h(b_1+b_2)}{2}$ units²

where h = height $b_1 = length$ of base 1 $b_2 = length$ of base 2

ALGEBRA

Multiplying and Dividing Numbers by Use of Exponents

$$A^5 \cdot A^7 = ?$$

$$A^5 \bullet A^7 = ?$$
 $A^{17} + A^8 = ?$

Use of Decimals

Convert a Linear Distance from a Fraction to a Decimal

Convert a Linear Distance from a Decimal to a Fraction

$$14.81' = 14' 934''$$
, $.81 \times 12 = 9.72 = 9''$, $.72 \times 16 = 11.52 = 12/16 = 14' 934''$

Use of Ratio and Proportions

$$4/20 = ?/60$$

Subtracting Negative Numbers

Subtracting Unlike Algebraic Terms

Subtract
$$6x - 3y$$
 from $-4x + 4y$

Factoring Quadratic Equations

$$A^2 + 9A - 36 = 0$$

Solving Quadratic Equations

Solve for A after factoring (above equation)

Solving Simultaneous Equations by Subtraction or Addition:

$$16a - 14b = 76$$

$$-8a - 18b = 12$$